BERGIN, R. & CARLSTRÖM, D. (1968). Acta Cryst. B24, 1506.
BERGIN, R. & RINGERTZ, H. (1969). In RINGERTZ, H. Stereochemical Aspects of Purine Degradation. Thesis. Stockholm 1969.

CARLSTRÖM, D. & BERGIN, R. (1967). Acta Cryst. 23, 313.

CHOTIA, C. & PAULING, P. (1969). Proc. Nat. Acad. Sci. Wash. 63, 1063.

CLOSE, W. J. (1950). J. Org. Chem. 15, 1131.

CRUICKSHANK, D. W. J. (1966). In LIPSON, H. & COCHRAN, W. The Crystalline State, Vol. III, The Determination of Crystal Structures, p. 356. London: Bell. HAHN, T. (1957). Z. Kristallogr. 109, 438.

Acta Cryst. (1971), B27, 386

The Crystal Structure of AlSeCl₇

see.

BY BEATRIJS A. STORK-BLAISSE AND C. ROMERS

Chemical Department, Section X-ray and Electron Diffraction, University of Leiden, P. O. Box 75, Leiden, The Netherlands

(Received 6 April 1970)

Solid AlSeCl₇ appears as irregular blocks of yellow triclinic crystals. The space group is P1. The lattice constants are a=9.87, b=8.27, c=9.83 Å, $\alpha=139.9$, $\beta=94.8$, $\gamma=93.8^{\circ}$ and Z=2. The structure, solved by minimum functions applied to photographic data (Mo radiation), is built up from AlCl₄ tetrahedra and SeCl₆ octahedra. The tetrahedra (Al-Cl=2.13 Å) are quite regular but the octahedra are distorted and contain three long and three short Se-Cl distances (3.04 and 2.11 Å). The chlorine atoms contributing to the long Se-Cl distances are shared between Al and Se. The structure consists approximately of AlCl₄⁻ and SeCl₃⁺ ions.

Introduction

Α number of compounds with composition $M^{n+}Cl_n XCl_4$ (X being \hat{S} , Se or Te) were prepared and investigated by Groeneveld (1953). For the complex with M = Al and X = Se he found an Al/Se ratio of 1:1 and not a ratio of 2:1 as reported by Weber (1858) and Lenher & Kao (1926). In view of the chlorine donating properties of SeCl₄ it can be anticipated that the title compound consists of $AlCl_4^-$ and $SeCl_3^+$ ions. Aluminum compounds AlBr₃,Al(CH₃)₃ and Al(CH₃)₂X, X being Br or Cl, form dimeric molecules in the solid and vapour state, in which the aluminum atoms are tetrahedrally coordinated by Br, Cl or CH3 groups (Renes & Mac-Gillavry, 1945; Palmer & Elliot, 1938; Brockway & Davidson, 1941). Gaseous aluminum trichloride also consists of double molecules, Al₂Cl₆(Palmer & Elliot, 1938). In the solid state, however, it forms cubic close-packed layers of Cl ions with Al ions in octahedral coordination (Ketelaar, MacGillavry & Renes, 1947). In view of the fluctuating coordinating properties of aluminum with respect to chlorine it was deemed necessary to investigate the crystal structure of AlSeCl₇.

Experimental

AlSeCl₇ was obtained by boiling a solution of 1.5 mol AlCl₃ and 1 mol SeCl₄ in SO₂Cl₂. After cooling, pale

yellow crystals appeared which were filtered in the absence of moisture. The product was washed with SO_2Cl_2 and dried *in vacuo*. The crystals were of irregular shape. Owing to their extreme sensitivity to moisture several crystals were used during the investigation.

International Tables for X-ray Crystallography (1962). Vol.

JOHNSON, C. K. (1965). ORTEP, A Fortran Thermal Ellip-

STEWART, J. M. & HIGH, D. (1965). X-RAY-63, Program

and Univ. of Maryland, College Park, U.S.A.

Structure Reports (1954). 18, 769. Utrecht: Oosthoek.

System for X-ray Crystallography for the IBM 709-7090-

7094. Depts. of Chemistry, Univ. of Washington, Seattle

soid Plot Program for Crystal Structure Illustrations.

ORNL-3794, Oak Ridge National Laboratory, Tennes-

III. Birmingham: Kynoch Press.

PHILLIPS, D. C. (1954). Acta Cryst. 7, 159.

Unit-cell dimensions were derived from equi-inclination Weissenberg photographs about axes a' (zero, first and second layer) and c' (zero layer) using unfiltered copper radiation ($\lambda_{K\alpha_1} = 1.54051$, $\lambda_{K\alpha_2} =$ 1.54433, $\lambda_{K\beta} = 1.39217$ Å). The photographs were superposed with aluminum powder lines (a = 4.0492 Å at 20° C). The measured interplanar spacings d(hkl)were determined with a linear least-squares program resulting in the following parameters:

<i>a</i> ′=14·50 Å	$\alpha' = 123 \cdot 4^{\circ}$
b' = 6.37	$\beta' = 42.7$
c' = 9.83	y' = 121.3.

The Delaunay reduced cell (International Tables for X-ray Crystallography, 1952) was obtained by the transformation $1 \ 0 \ \overline{1}/0 \ 1 \ 1/0 \ 0 \ \overline{1}$ resulting in a unit cell with

a=9∙87 Å	$\alpha = 139.9^{\circ}$
b = 8.27	$\beta = 94.8$
c = 9.83	$\gamma = 93.8$.

This cell is identical with the Bravais reduced cell (Kennard, Speakman & Donnay, 1967). The leastsquares program produces estimated standard deviations in six quantities, a^{*2} , b^{*2} , $a^*b^*\cos\gamma^*$, etc. However, the repeat distances and angles of the real lattice are functions of the corresponding quantities in reciprocal space. For this reason it was impossible to calculate standard deviations with this program in the linear version.

Assuming a close-packed array of atoms, a chlorine atom with a radius of 1.8 Å occupies a volume of 33.05 Å³. Accordingly, the maximum number of chlorine atoms in the unit cell of AlSeCl₇ cannot be larger than V/33.05 = 15.2. There are clearly two units of AlSeCl₇ in the chosen cell. With Z = 2 the calculated density is 2.33 g.cm⁻³.

Non-integrated equi-inclination Weissenberg photographs (multiple-film technique) of the layers l=0, $-1, \ldots -5$ and zero-layer photographs about [021] and [012] were taken at room temperature with Zr-filtered Mo radiation ($\lambda = 0.7107$ Å). The intensities of 1381 reflexions were estimated visually and reduced to structure factor moduli in the usual way. An absorption correction was applied assuming a cylindrical cross-section for the crystals used [μ (Mo $K\alpha$) = 57 cm⁻¹]. The structure factors of the various levels were put on a single scale by hand.

Determination of the structure and refinement

As a first step an unsharpened Patterson function was calculated which contained a large extended peak at a distance of 6.8 Å from the origin. It was anticipated that this peak, with a height about 0.4 times the value of the origin peak, should be attributed to several interactions of the kind Se-Se and Cl-Cl. The next class of peaks with heights about 0.1 times the value of the origin peak could be explained as being interactions of the mixed type Se-Cl. However, it was not possible to find a proper solution on the basis of the centric space group $P\overline{1}$.

The hk0 reflexions were subjected to the N(z) test of Howells, Phillips & Rogers (1950). The computer-calculated and plotted curve (Fig. 1) clearly indicates that the structure is acentric and the space group is P1.

Fig. 1. The intensity distribution of reflexions hk0 in AlSeCl₇.

Taking into account the ionic radii of Se⁴⁺ (0.5 Å) and of $Cl^{-}(1.8 \text{ Å})$ we arrive at a shortest Se–Cl distance of approximately 2.3Å. A careful inspection of spheres with a radius of 2.3 Å about the origin and about the next-largest peak indicates that there are two candidates for single Se-Cl vectors representing a possible image of a part of the structure. A minimum function (Buerger, 1959) was therefore calculated by shifting over these two vectors. A model on spokes was constructed from the 31 highest peaks of this superposition function. We could distinguish two octahedra of chlorine atoms, the centres of which are separated by a vector of 6.8 Å (see Fig. 2) corresponding with the highest peak in the original Patterson function. The two octahedra are more or less oriented in the same direction, explaining why many overlapping interactions contribute to the predominant peak. At this stage two selenium and twelve chlorine atoms were located.

The positions of these atoms were refined with a least-squares method (block-diagonal approximation). Dirac-Slater scattering factors calculated by Cromer & Waber (1965) were used for selenium and chlorine and afterwards also for aluminum atoms. This model refined to a conventional R index of 36.6% and resulted in a three-dimensional Fourier synthesis in which the two remaining chlorine atoms were found. It was now possible to distinguish more or less close-packed layers of halogen atoms.

Since the refinement with the block-diagonal approximation was slow, we shifted to a full-matrix refinement in which Se(1) was fixed at the origin. The justification for the application of this procedure to an acentric structure was the presence of strong interactions of the kind $\frac{\delta F}{\delta x_i}$. $\frac{\delta F}{\delta x_j}$, $\frac{\delta F}{\delta x_i}$. $\frac{\delta F}{\delta y_j}$, etc. contributing to the matrix of normal equations (Srinivasan, 1961). For example, we afterwards observed interactions $\frac{\delta F}{\delta x_3}$. $\frac{\delta F}{\delta x_7}$, $\frac{\delta F}{\delta z_7}$ [Cl(3) and Cl(7)] amounting to -0.28×10^3 and -0.18×10^3 . The elements $\left(\frac{\delta F}{\delta x_3}\right)^2$ and $\left(\frac{\delta F}{\delta x_7}\right)^2$ were 0.38×10^4 and 0.36×10^4 respectively.

After four cycles with an overall temperature factor the reliability index dropped to $26 \cdot 2\%$. Attempts to locate the aluminum atoms failed at this stage. The refinement was continued with individual isotropic *B* values and the *R* index decreased to $21 \cdot 7\%$. It was decided to calculate a difference Fourier synthesis; the aluminum atoms could then be distinguished. After three more cycles with isotropic *B* values the agreement index dropped to $16 \cdot 1\%$. Up to this stage unitary weights were used. Analysis of the residuals for different groupings of *F* values suggested the weighting scheme $w=1/a+F_{obs}+bF_{obs}^2$ with $a=2 \cdot 0$ and b=0.0755; for $F_{obs} \le 6.0$ the value $F_{obs} = 6.0$ was used. The smallest estimated intensity value (before reduction) was $1 \cdot 0$. The non-observed reflexions were given this intensity values resulting in slightly varying $F = (1 \times (Lp)^{-1} \times ab)$ sorption correction)^{1/2} after reduction. Only if $F_{calc} > F$ were these reflexions included in the refinement with an F_{obs} value of $0.7 \times F$ and a constant weight of 0.05. The refinement with isotropic B values was continued over 4 cycles and R decreased to 12.3% (observed reflexions only). The largest errors, probably due to inefficient absorption correction and/or extinction effects, were observed for the 14 strongest reflexions (Table 1). These reflexions were discarded during the following calculations. A difference electron density map was computed, which gave a clear indication of the anisotropic thermal motion for nearly all the atoms. Since most difficulty was encountered in the location of the aluminum atom we checked that no disordering of these atoms was present in this map.

Table 1. Discarded structure factors

h	k	l	Fobs	F_{calc}
2	0	0	83.7	102.4
-3	1	0	110.8	109.4
-6	2	0	114.2	96.7
3	-2	-1	107.8	153-4
0	-1	-1	76.1	107.8
-3	0	-1	110.1	169.4
2	3	-1	98.5	139-3
5	1	-2	125.4	147.5
2	2	-2	92.2	133-0
-1	3	-2	162.4	169.7
2	1	-3	139-1	162.5
-4	3	-3	118.0	146.7
4	3	- 5	88.1	71.9
1	4	- 5	106.5	122.6

The final anisotropic refinement was carried out over two cycles. The matrix to the normal equations was

Table 2. Calculated and observed structure factors on an absolute scale ($\times 10$).

The non-observed reflexions are indicated by a minus sign.

н	κι	FN	FC н K L	۴n	FC H K L	¢ ()	Ff H	×ι	5.0	FFHKL	FO	FCHKL	FO	FC
3	0 0	70	112 2 4 0	183	150 10 -6 -1	- 74	30 -8	1 -1	130	100 -5 5 -1		71 4 -2 -2	147	1 10
4	0 0	445	437 1 4 0	118	112 11 -4 -1	122	151 -7	i -i -	25#	239 -4 5 -1	561	559 5 -2 -2	345	348
5	0 0	410	105 7 4 1	365	115 -9 -1 -1	24	125 -6	1 -1	\$34	414 -3 5 -1	- 74	57 6 -2 -2	65	73
\$	0 0	345	104 4 4 0	247	214 -9 -1 -1	114	134 -4	1 -1	777	301 -2 5 -1	105	107 7 -2 -2	378	375
á	0 0	245	197 5 4 0	159	149 - 6 - 1 -1	210	116 -4	1 -1	414	461 -1 5 -1	- 74	69 R -2 -2	-73	51
9	ñ c	310	257 4 4 0	> 75	216 -5 -1 -1	25.0	241 - 2	1 -1	144	127 1 5 -1	151	154 10 -2 -2	137	145
10	0 0	248	263 7 4 0	213	177 -4 -3 -1	79	50 2	i - i	176	151 2 5 -1	376	332 11 -2 -2	102	117
11	0 0	219	191 4 4 7	120	154 - 1 - 1 - 1	247	11 I I	1 -1	295	249 1 5 -1	141	149 17 -2 -2	-97	90
-12	0 0	208	210-12 5 0	94	96 -2 -1 -1	417	351 4	1 -1	191	126 4 5 -1	111	149 13 -2 -2	. 92	104
-10	iŏ	90	64-11 5 0	96	104 0 -3 -1	176	310 6	1 -1	277	250 A 5 -1	223	216-10 -1 -2	-86	81
~9	1 0	146	15A-10 5 C	194	190 1 -1 -1	341	175 7	i - i	356	367 7 5 -1	213	197 -9 -1 -2	114	118
	1 0	154	148 -9 5 0	-80	39 2 -3 -1	479	513 R	1 -1	419	436 4 5 -1	99	RR -R -1 -2	203	216
-4	iö	166	159 .7 5 0	-04		676	214 9	1 -1	104	149 9 5 -1	104	100 -7 -1 -2	339	348
-5	i õ	226	207 - 5 C	227	250 5 -3 -1	144	122 11	1 -1	250	252 -4 5 -1	171	155 -5 -1 -7	219	204
-4	1 0	154	149 -4 4 0	136	148 6 -3 -1	144	134 12	i -i	169	110 -1 6 -1	117	289 -4 -1 -2	208	1.89
-2	1 0	279	273 - 4 5 0	243	275 7 -3 -1	1 46	108 13	1 -1	-103	81 -2 6 -1	253	202 -1 -1 -2	464	545
- 1	1 0	584	447 -2 5 0	302	306 2 -3 -1	122	01-17	1 -1	133	111 -1 6 -1	224	221 -2 -1 -2	159	143
ĩ	1 0	726	746 -1 5 0	455	501 10 -3 -1	230	219-11	2 -1	285	793 1 6 -1	229	195 1 -1 -2	577	410
2	1 0	507	470 0 5 0	1 • 4	144-13 -2 -1	112	102-10	2 -1	141	149 2 6 -1	- 89	34 1 -1 -2	67	63
2	1 0	396	301 I 5 C	291	218-12 -2 -1	-107	108 -9	2 - t	497	540 3 6 -1	- 91	58 2 -1 -2	499	574
- 2	; 0	451	172 3 5 0	142	179-11 -7 -1	-07	141 - 9	2 -1	359	352 4 6 -1	162	154 3 -1 -2		
6	iŏ	311	774 4 5 0	190	144 -9 -2 -1	131	117 -6	2-1	440	469 6 6 -1	700	201 5 -1 -2	40	66
7	1 0	68	47 5 5 0	278	242 -4 -7 -1	175	190 -5	2 -1	70 R	149 -3 7 -1	189	140 6 -1 -2	316	304
2	1 0	101	247 6 5 6	-91	98 -7 -7 -1	204	310 -4	2 -1	400	534 -2 7 -1	- 94	A0 7 -1 -Z	211	220
ıč	iŏ	154	320-11 6 0	10,	151 -5 -2 -1	220	203 -2	5-1	414	593 0 7 -1	136	130 0 -1 -7	141	145
11	1 0	177	163-10 e 0	- 97	73 -4 -2 -1	220	213 -1	ž - i	240	227 -1 -6 -2	134	13* 10 -1 -2	187	195
12	1 0	115	121 - 0 0 0	135	150 -3 -2 -1	***	A34 0	2 -1	542	711 0 -6 ->	-96.	17 11 -t -z	190	175
	1 0	104	105 -8 6 0	157	14(-2 -2 -1	450	414 1	2 -1	135	108 1 -6 -2	131	147 12 -1 -2	85	• • •
-12	2 0	156	194 -A A O	198	236 9 -2 -1	171	146 3	2 -1	416	397 3 - 4 - 2	130	146-12 0 -2	129	152
-11	2 O	- 86	87 -5 6 0	87	114 1 -2 -1	497	512 4	2 - i	231	211 4 -4 -2	-93	90-11 0 -2	86	
-10	5 0	114	114 -4 6 0	172	208 2 -2 -1	107	174 5	2 -1	538	601 5 -6 -2	114	138-10 0 -2	-81	19
	2 0	418	189 - 2 5 0	121	353 5 -2 -1	342	319 5	2 -1	309	286 -4 -5 -2	1 30	154 -4 0 -2	296	295
-1	2 0	132	111 -1 6 2	- 84	12 4 -2 -1	747	117 8	5-1	156	151 -2 -5 -2	**	123 -7 0 -2	342	373
-5	2 0	197	176 0 6 0	346	354 7 -7 -1	333	305 4	2 - 1	307	242 -1 -5 -2	86	76 -6 0 -2	619	720
	2 0	53	41 1 6 1	- 87	04 4 -7 -1	109	759 10	2 -1	203	197 0 -4 -2	65	99 - 4 0 - 2	537	618
-;	5 0	270	240 3 6 0	-91	67 10 -2 -1	200	250 12	; -:	03	101 1 -5 -7	1.57	112 -1 0 -2	493	78
-1	2 0	441	415 4 6 0	161	188 11 -2 -1	91	117 11	3-1	117	122 3-5-2	145	166 -2 0 -2	147	137
0	2 0	639	410 5 6 0	-97	57 12 -2 -1	13	154-14	3 -1	117	67 4 - 5 - 2	84	100 -1 0 -2	416	593
	2 0	508	462 6 6 0	100	74 13 -2 -1	144	160-13	3 -1	145	149 5 -5 -2	225	252 0 0 -2	254	223
5	2 0	719	6AC -6 7 0	- 97	14-11 -1 -1	-97	82-11	3.27	184	177 7 -5 -7	196	211 2 0 -2	245	218
4	ž o	204	252 -5 7 0	-94	53-10 -1 -1	97	120-10	3 -1	174	204 -6 -4 -2	110	96 3 0 -2	503	539
	2 0	500	429 -4 7 0	-94	41 -9 -1 -1	123	48 - 4	3 -1	417	360 -5 -4 -2	86	105 4 0 -2	246	230
ŝ	2 0	242	207 - 2 7 0	- 94	53 -7 -1 -1	794	240 -4	1-1	154		736	229 5 0 -2	270	265
8	2 0	291	284 -1 7 0	135	146 -6 -1 -1	101	1 4 -6	á - i	176	114 -7 -4 -2	167	160 7 0 -2	245	251
.9	2 0	242	253 0 7 0	96	96 - 5 - 1 - 1	**3	252 -5	3 -1	480	514 -1 -4 -2	77	AL A 0 -2	301	279
10	2 0	124	107 7 7 0	171	128 -4 -1 -1	470	444 -4	1 -1	260	214 0 -4 -2	348	354 9 0 -2	263	276
ij	; ;	170	134 3 7 0	143	146 -2 -1 -1	34.0	119 -2	1-1	410	419 2 -4 -2	189	382 11 0 -2	114	107
13	2 0	-103	103 -3 -4 -1	147	141 -1 -1 -1	6.4	61 -1	3 - 1	461	490 3 -4 -7	-74	77 12 0 -2	169	161
14	2 0	107	44 -2 -6 -1	102	104 1 -1 -1	195	140 0	2 - !	423	432 4 -4 -1	203	275 13 0 -2	89	107
-12	1 0	-91	43 0 -6 -1	140	161 3 -1 -1	324	150 1	1.1	220	218 6 - 6 - 2	- 16	432-12 1 -2		100
-11	1 0	- 17	51 1 - 4 - 1	- 97	Ai 4 -i -i	384	423 4	1 - i	44.8	4AR 7 -4 -7	161	150-11 1 -2	117	126
-10	3 0	203	191 2 - 6 -1	99	122 5 -1 -1	344	31A 5	3 -1	307	266 8 -4 -2	219	214-10 L -2	144	187
-9	10	215	192 3 -6 -1	- 97	95 6 -1 -1	240	223 6	2 - 1	164	158 9 -4 -2	. 45	104 -9 1 -7	319	321
~ 7	j õ	364	344 5 -6 -1	-90	12 8 -1 -1	223	141 4	1 -1	317	322 -6 -3 -2	iii	112 -7 1 -2	197	193
-6	3 0	296	773 6 -6 -1	142	146 9 -1 -1	324	295 9	3-1	155	156 -5 -3 -2	207	235 -6 1 -2	464	475
-5	3 0	177	152 -5 -5 -1	200	180 10 -1 -1	- 45	71 10	3 -1	134	140 -4 -3 -2		84 -5 1 -2	243	244
- 1	10	167	117 -1 -5 -1	163	149 12 -1 -1	117	270-13	2 -1	100	115 -7 -1 -7	211	215 - 3 2 - 2	606	155
-?	1 0	402	114 -2 -5 -1	97	104 11 -1 -1	175	179-11	4 - i	-94	58 -1 -7 -2	273	767 -7 1 -2	630	693
-1	3 0	237	174 -1 -5 -1	284	245-13 0 -1	1 4 1	176-10	4 -1	٩0	104 0 -3 -2	95	103-1 1-2	440	556
°,	3 0	253	194 0 -5 -1	109	109-12 0 -1	-99	77 -9	<u>+ -1</u>	148		219	243 1 1 -2	489	715
ż	3 0	178	302 2 - 5 - 1	- 87	32-10 0 -1	-90	25 -7		231	209 3 -3 -2	100	177 3 1 -2	324	341
3	3 0	140	139 3 -5 -1	44	110 -9 0 -1	179	149 -4	4 = 1	403	366 4 -3 -2	67	76 4 1 -2	292	241
	2 0	529	467 4 -5 -1	- 89	90 -A C -1	-76	31 -5	4 -1	150	313 5 -3 -2	169	161 6 1 -2	126	146
2	, 0	476	374 5 -5 -1	100	10 -1 0 -1	160	161 -4	1 - 1	121	141 8 - 3 - 2 447 7 - 3 - 2	144		362	140
ř	ίŏ	113	177 7 - 5 - 1	10-	113 -5 0 -1	444	441 - 2	2 - i	193	111 8-3-2	tRA	161 9 1 -2	196	223
8	3 0	125	281 -8 -4 -1	125	122 -+ 0 -1	120	197 -1	4 -1	567	671 9 -3 -2	80	102 10 1 -2	- 13	60
	3 0	1.24	110 -1 -0 -1	-97	73 -2 0 -1	504	510 0	• - 1	110	105 10 -3 -2	118	119 11 1 -2	240	246 84
ii	3 0	139	136 -5 -4 -1	124	157 1 0 -1	773	278 2		117	114 12 -1 -2	in	143 13 1 -2	143	120
-14	4 0	147	135 -4 -4 -1	1 75	170 4 0 -1	390	440 1	4 -1	562	542-10 -2 -2	129	192-11 2 -2	142	169
-11	• 0	- 19	A3 -3 -4 -1	- 44	41 5 0 -t	99	39 6	4 -1	224	197 -9 -7 -7	86	105-10 2 -2	266	295
-12	: ?	213	197 - 7 - 4 - 1	105	786 6 1 -1		434 5	4 -1	144	14 - 8 - 7 - 7	144	1.7 -9 2 -2	102	105
10	4 0	- 86	49 0 -4 -1	-	434 4 0 -1	6	789 7	÷ -1	242	241 -6 -7 -7	172	384 -7 2 -2	108	143
-9	4 0	>15	278 1 -4 -1	134	129 9 9-1	•**	140 4	4 - i	-93	40 -5 -7 -7	100	104 -6 2 -2	341	316
- 2	• 0	251	215 2 -4 -1	174	349 10 0 -1	239	215 0	<u>+ - t</u>		118 -4 -2 -2	178	154 -5 2 -2	263	247
-7	• 0	347	514 3 -4 -1 113 6 -6 -1	236	740 11 0 -1	719	201-12	2 - 1	101	9A -1 -7 -2	757	219 - 3 2 - 2	277	118
- 5	. 0	403		241	241 13 7 -1	124	93-17	< -1	114	114 -1 -2 -2	340	162 0 2 -2	517	432
-4	4 Ö		14 4 -4 -1	145	176-12 1 -1		105 -9	5 -1	91	49 0 - 7 - 7	6 75	786 1 7 -2	263	246
-1	÷ 0	477	476 7 -4 -1	- 86	5?-11 1 -1	132	118 -4	5-1	151	111 1-2-2	443	440 3 2 -2	179	176
-1		295	260 9 -4 -1	319	280 -9 3 -1	1.90	116 -7	5 -1	247	203 3 -2 -2	285	270 5 2 -2	303	272
								N						

Table 2 (cont.)

。 []]]]]]]]]]]]]]]]]]]	19/10/11 # 5/11#191/21#545454540056669740054669780798499773449477734697110015571183102112004549977344977714110155711831025571193104545701017570065711910000000000000000000000000000000000		2012/01/01/2012/01/02/01/02/01/02/01/02/01/02/01/02/01/02/01/02/02/02/02/02/02/02/02/02/02/02/02/02/				1676674714-96949694444447444971147477777177177174167377178467377174441744797771214441714674784477171117444774444784477717444111141112174741471747144417111711		10-1 # 544 147 144 144 144 141 147 144 144 144 1		
4	FO 2 38 2 610 1 98 6 145 2 39 1 68 8 60 1 09 1 00 1 00	$\begin{array}{rcrcrcc} H & K & L & L \\ H & K & -K & K \\ 246 & 5 & 5 & 4 & -K \\ 786 & 5 & 5 & 4 & -K \\ 786 & 5 & 5 & 4 & -K \\ 787 & 7 & 7 & 6 & -K \\ 787 & 7 & 7 & 0 & 5 & -K \\ 787 & 7 & 7 & 0 & 0 & 5 & -K \\ 787 & 7 & 7 & 0 & 0 & 5 & -K \\ 787 & 7 & 7 & 0 & 0 & 5 & -K \\ 788 & 7 & 7 & 0 & 0 & 5 & -K \\ 788 & 7 & 7 & 0 & 0 & 5 & -K \\ 788 & 7 & 7 & 0 & 0 & 5 & -K \\ 788 & 7 & 7 & 0 & 0 & 5 & -K \\ 788 & 7 & 7 & 0 & 0 & 5 & -K \\ 788 & 7 & 7 & 0 & 0 & 5 & -K \\ 788 & 7 & 7 & 0 & 0 & 5 & -K \\ 788 & 7 & 7 & 0 & 0 & 0 & 5 \\ 788 & 7 & 7 & 0 & 0 & 0 & 0 \\ 788 & 7 & 7 & 0 & 0 & 0 & 0 \\ 788 & 7 & 7 & 0 & 0 & 0 & 0 \\ 788 & 7 & 7 & 0 & 0 & 0 \\ 788 & 7 & 7 & 0 & 0 & 0 \\ 788 & 7 & 7 & 0 & 0 \\ 788 & 7 & 7 & 0 & 0 \\ 788 & 7 & 7 & 0 & 0 \\ 788 & 7 & 7 & 0 & 0 \\ 788 & 7 & 7 & 0 & 0 \\ 788 & 7 & 7 & 0 & 0 \\ 788 & 7 & 7 & 0 & 0 \\ 788 & 7 & 7 & 0 & 0 \\ 788 & 7 & 7 & 0 & 0 \\ 788 & 7 & 7 & 0 & 0 \\ 788 & 7 & 7 & 0 & 0 \\ 788 & 7 & 7 & 0 & 0 \\ 788 & 7 & 7 & 0 & 0 \\ 788 & 7 & 7 & 0 & 0 \\ 788 & 7 & 7 & 0 & 0 \\ 788 & 7 & 7 & 7 & 0 \\ 788 & 7 & 7 & 7 & 0 \\ 788 & 7 & 7 & 7 & 0 \\ 788 & 7 & 7 & 7 & 0 \\ 788 & 7 & 7 & 7 & 0 \\ 788 & 7 & 7 & 7 & 0 \\ 788 & 7 & 7 & 7 & 0 \\ 788 & 7 & 7 & 7 & 0 \\ 788 & 7 & 7 & 7 & 0 \\ 788 & 7 & 7 & 7 & 0 \\ 788 & 7 & 7 & 7 & 0 \\ 788 & 7 & 7 & 7 & 0 \\ 788 & 7 & 7 & 7 & 0 \\ 788 & 7 & 7 & 7 & 0 \\ 788 & 7 & 7 & 7 & 7 \\ 788 & 7 & 7 & 7 & 7 \\ 788 & 7 & 7 & 7 & 7 \\ 788 & 7 & 7 & 7 & 7 \\ 788 & 7 & 7 & 7 & 7 \\ 788 & 7 & 7 & 7 & 7 \\ 788 & 7 & 7 & 7 & 7 \\ 788 & 7 & 7 & 7 & 7 \\ 788 & 7 & 7 & 7 & 7 \\ 788 & 7 & 7 & 7 & 7 \\ 788 & 7 & 7 & 7 & 7 \\ 788 & 788 & 7 & 7 & 7 \\ 788 & 7 & 7 & 7 & 7 \\ 788 & 7 & 7 & 7 & 7 \\ 788 & 7 & 7 & 7 & 7 \\ 788 & 7 & 7 & 7 & 7 \\ 788 & 7 & 7 & 7 & 7 \\ 788 & 7 & 7 & 7 & 7 \\ 788 & 7 & 7 & 7 & 7 \\ 788 & 7 & 7 & 7 & 7 \\ 788 & 7 & 7 & 7 \\ 788 & 7 & 7 & 7 \\ 788 & 7 & 7 & 7 \\ 788 & 7 & 7 & 7 \\ 788 & 7 & 7 & 7 \\ 788 & 7 & 7 & 7 \\ 788 & 7 & 7 & 7 \\ 788 & 7 & 7 & 7 \\ 788 & 7 & 7 & 7 \\ 788 & 7 & 7 & 7 \\ 788 & 7 & 7 & 7 \\ 788 & 7 & 7 & 7 \\ 788 & 7 & 7 & 7 \\ 788 & 7 & 7 & 7 \\ 788 & 7 & 7 & 7 \\ 788 & 7 & 7 & 7 \\ 788 & 7 & 7 & 7 \\ 788 & 7 & 7 &$	1177211-1777-40781355431412-1 5 00778109739478071135543142487373 0 6077849434173111054786812887373	L 4559 49 19 19 19 19 19 19 19 19 19 19 19 19 19	1-1411723113-3-1111111 1113-7- F 289857896330768728771685518657 G 66626187778872107956099501125	H Y -5 H Y -7 H -7 -7 H	2-1 112-11 2-1112-11-1117- F 07754204344747554440719111774 N 5647621740417647664836461117	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	FD 7-87 2-87 2-89 1741 130 - 96 1337 785 7133 7075 7574 4577 1475 1751 -911 1751 -912 -912 -912 197	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	FD FC -104 65 -97 89 -91 124.9 401 124.9 403 394 403 394 403 247 404 394 403 247 404 401 127 248 404 401 1120 148 1120 148 1120 148 1224 209 401 1120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 1210 120 1211 1212 1224 120 1212 122 122 122 1211 144

divided into 20 blocks: one 54×54 block for the positional parameters of all atoms and eighteen 6×6 blocks for the individual thermal parameters and one 2×2

block for the scale and overall B factor. This anisotropic refinement hardly affected the positional parameters but significantly decreased (~20%) the standard de-

viations. The final R value is 10.9% (including all reflexions) and 10.1% (excluding non-observed reflexions).

The structure factors are listed in Table 2, the positional parameters and their standard deviations in Table 3, and the vibrational parameters U_{ij} in Table 4.

Structures with space group P1 are quite rare and have three degrees of freedom, *i.e.* one atom can be fixed at will in the unit cell on $x_0y_0z_0$. As a result of the least-squares refinement this atom has zero standard deviations in its positional parameters if one refines with a full matrix. This situation is less paradoxical if one remembers that the reflexion intensities are functions of distances and not of positions. The standard deviations in the distance are independent of the choice of origin.

Discussion of the structure

A projection of the structure along the direction \mathbf{a}^* on (100) is presented in Fig. 2. The average values of machine-calculated standard deviations are 0.013 Å for Se–Cl, 0.016 Å for Al–Cl and 0.018 Å for Cl–Cl dis-

tances, the influence of errors in the unit-cell parameters being negligible. However, no estimate of systematic errors is incorporated in these standard deviations.

A careful study of adjoining unit cells (not shown in Fig. 2) reveals that the chlorine atoms are stacked in cubic close-packed layers, and suggests a partial ionic character for the structure. The selenium atoms are coordinated octahedrally by six chlorine atoms. The octahedra are distorted in such a way (Table 5) that there are three short Se-Cl distances (average value ~ 2.1 Å) and three large Se-Cl distances (average value ~ 3.0 Å). The symmetry is approximately C_{3v} . The selenium atom is located on the line connecting the centres of gravity of the two kinds of chlorine atoms (Fig. 3). The interatomic Cl-Cl distances are approximately 3.2 Å in the small triangle and approximately 4.0 Å in the large triangle of chlorine atoms.

Each Al atom is surrounded tetrahedrally by 4 Cl atoms at distances of $2 \cdot 1$ Å. These tetrahedra are quite regular (Table 5). The atoms Cl(13) and Cl(14) are only coordinated to Al, the atoms Cl(1), Cl(4), Cl(5), Cl(7), Cl(8) and Cl(11) only to Se; Cl(2), Cl(3), Cl(6), Cl(9),

Table 3. Atomic parameters (in fractions of cell edges) and their standard deviations (Å)

	x	$\sigma(x)$	У	$\sigma(y)$	z	$\sigma(z)$
Se(1)	0.0	0.0	0.0	0.0	0.0	0.0
Se(2)	0.4763	0.0037	0.3436	0.0060	0.7871	0.0076
Cl(1)	0.0480	0.0131	0.6668	0.0187	0.8784	0.0236
Cl(2)	0.1320	0.0107	0.8490	0.0174	0.6557	0.0194
Cl(3)	0.9963	0.0129	0.4714	0.0170	0.1280	0.0192
Cl(4)	0.9270	0.0119	0.1580	0.0201	0.2658	0.0232
Cl(5)	0.8059	0.0119	0.8348	0.0214	0 ·7848	0.0257
Cl(6)	0.2965	0.0097	0.3041	0.0165	0.2878	0.0206
Cl(7)	0.4905	0.0116	0.9846	0.0160	0.6428	0.0222
Cl(8)	0.3671	0.0115	0.4890	0.0188	0.0278	0.0226
Cl(9)	0.5768	0.0108	0.1601	0.0174	0.4109	0.0194
Cl(10)	0 ·4418	0.0121	0.7835	0.0146	0.8794	0.0173
Cl(11)	0.6807	0.0098	0.5491	0.0165	0.9802	0.0195
Cl(12)	0.2040	0.0097	0.0746	0.0194	0.4802	0.0233
Cl(13)	0.8713	0.0097	0.0237	0.0160	0.5443	0.0212
Cl(14)	0.6278	0.0109	0.4212	0.0179	0.2595	0.0218
Al(1)	0.0460	0.0095	0.8565	0.0162	0.4558	0.0200
Al(2)	0.4838	0.0104	0.1670	0.0168	0.2080	0.0205

Table 4. Vibrational parameters $U_{ij}(Å^2)$ in the temperature factor $\exp\left[-2\pi^2\sum_{ij}U_{ij}a_i^*a_j^*h_ih_j\right]$

	U_{11}	U_{22}	U33	$2U_{12}$	$2U_{23}$	2 <i>U</i> ₁₃
Se(1)	0.0200	0.0206	0.0228	0.0051	0.0334	0.0058
Se(2)	0.0209	0.0182	0.0274	0.0047	0.0315	0.0071
Cl(1)	0.0635	0.0372	0.0659	0.0330	0.0697	0.0277
Cl(2)	0.0450	0.0208	0.0316	0.0411	0.0692	0.0369
Cl(3)	0.0677	0.0322	0.0199	0.0345	0.0265	0.0016
Cl(4)	0.0494	0.0570	0.0553	0.0413	0.0799	0.0515
Cl(5)	0.0332	0.0592	0.0710	-0.0069	0.0901	-0·0111
Cl(6)	0.0221	0.0356	0.0472	0.0172	0.0211	0.0129
Cl(7)	0.0202	0.0283	0.0634	0.0232	0.0575	0.0193
Cl(8)	0.0403	0.0529	0.0589	0.0240	0.0768	0.0392
Cl(9)	0.0419	0.0446	0.0331	0.0429	0.0268	0.0276
Cl(10)	0.0652	0.0258	0.0127	0.0129	0.0206	0.0002
Cl(11)	0.0284	0.0394	0.0394	-0.0085	0.0601	-0.0124
Cl(12)	0.0253	0.0617	0.0658	-0.0270	0.1097	-0.0150
Cl(13)	0.0309	0.0325	0.0598	0.0337	0.0576	0.0278
Cl(14)	0.0385	0.0435	0.0552	-0.0005	0.0813	0.0073
Al (1)	0.0199	0.0245	0.0373	0.0102	0.0462	-0.0021
Al(2)	0.0238	0.0272	0.0282	0.0153	0.0436	0.0164

Cl(10) and Cl(12) are shared by tetrahedra and octahedra. It can be seen that the shared chlorine atoms are at larger distances from the selenium atoms.

In view of the observed coordination and distances we may conclude that the structure is composed of $AlCl_4^-$ ions and $SeCl_3^+$ ions, in agreement with the do-

Se(1) octahedron		Se(2) octahedron	
Se(1)-Cl(1)	2.11	Se(2)—Cl(7)	2.12
Cl(2)	3.03	Cl(8)	2.11
-Cl(3)	3.05		3.03
-Cl(4)	2.07	CI(10)	3.05
-CI(5)	2.13	-Cl(11)	2.13
-CI(6)	3.11		2.97
Cl(1)-Se(1)-Cl(2)	86.7	Cl(7)— $Se(2)$ - $Cl(8)$	100.0
-Cl(3)	165.0	-Cl(9)	88.1
-Cl(4)	99.3	-Cl(10)	165.8
-Cl(5)	99.4	-Cl(11)	98.9
-CI(6)	90.2	-CI(12)	166.3
CI(2) - Se(1) - CI(3)	/9.8	CI(0) - Se(2) - CI(9)	00.0
-Cl(4)	85.0	-Cl(10)	00.3
-CI(5)	84.8	-Cl(11)	88.1
$C_{1}(3) - Se(1) - C_{1}(4)$	93.3	Cl(9) - Se(2) - Cl(10)	79.5
-C(5)	86.6	-Cl(11)	90.3
-Cl(6)	81.8	-Cl(12)	81.4
Cl(4) - Se(1) - Cl(5)	99.1	Cl(10)-Se(2)-Cl(11)	88.2
-Cl(6)	89.0	-Cl(12)	85.4
Cl(5)-Se(1)-Cl(6)	166.3	Cl(11)-Se(2)-Cl(12)	170-2
Al(1) tetrahedron		Al(2) tetrahedron	
Al(1) - Cl(2)	2.12	Al(2)Cl(6)	2.12
Cl(3)	2.14	Cl(9)	2.17
Cl(12)	2.15	Cl(10)	2.14
Cl(13)	2.09	Cl(14)	2.13
Cl(2) - Al(1) - Cl(3)	108.3	Cl(6) - Al(2) - Cl(9)	112.0
-Cl(12)	107.5	-Cl(10)	109.2
-Cl(13)	113.1	-Cl(14)	108-3
CI(3) = AI(1) - CI(12)	108.2	CI(9) = AI(2) - CI(10)	107.5
-CI(13)	100.0	-U(14)	112.0
Ci(12) - Ai(1) - Ci(13)	109.0	Ci(10) - Ai(2) - Ci(14)	112.0
	2		
	e,		

Table 5. Bond lengths (Å) and decimal angles in AlSeCl₇

Fig. 2. Projection of the structure of AlSeCl₇ along the direction **a**^{*} on a plane parallel to (100). The heights (Å) of the atoms above this plane are indicated. The numbers in brackets indicate the atoms. The remaining numbers (Å) refer to bond lengths.

nating properties of SeCl₄ (Groeneveld, 1953). The observed Al-Cl distances (average 2.13 Å) in this structure agree very well with those (~ 2.14 Å) found in AlCl₄⁻ ions in the compound Mg(CH₃CN)₆(AlCl₄)₂ (Stork-Blaisse & Romers, 1971). Al is coordinated octahedrally in AlCl₃ and accordingly the Al-Cl distances are larger (~ 2.31 Å) (Ketelaar *et al.* 1947).

All calculations were performed on the IBM 360/50 computer with programs developed by Mrs E. W. M. Rutten (Fourier and least-squares) and by Mr R. A. G. de Graaff (geometry). The authors thank Dr Groeneveld for his supply of crystals. They are indebted to Mr R. Ch. D. E. Hasekamp and Mr J. C. Portheine for the production of the diffraction photographs.

References

- BROCKWAY, L. O. & DAVIDSON, N. R. (1941). J. Amer. Chem. Soc. 63, 3287.
- BUERGER, M. J. (1959). Vector Space. New York: John Wiley.
- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104.
- GROENEVELD, W. L. (1953). Symposium on Coordination
- Chemistry, Copenhagen. Howells, E. R., Phillips, D. C. & Rogers, D. (1950). Acta Cryst. 3, 210.
- International Tables for X-ray Crystallography (1952). Vol. I. p. 530. Birmingham: Kynoch Press.
- KENNARD, O., SPEAKMAN, J. C. & DONNAY, J. D. H. (1967). Acta Cryst. 22, 445.

- Fig. 3. Idealized deformed octahedron with $C_{3\nu}$ symmetry. The distances shown (Å) are mean values of the two octahedra.
- KETELAAR, J. A. A., MACGILLAVRY, C. H. & RENES, P. A. (1947). Rec. Trav. Chim. Pays-Bas, 66, 501.
- LENHER, V. & KAO, C. H. (1926). J. Amer. Chem. Soc. 48, 1550.
- PALMER, K. J. & ELLIOT, N. (1938). J. Amer. Chem. Soc. 60, 1852.
- RENES, P. A. & MACGILLAVRY, C. H. (1945). Rec. Trav. Chim. Pays-Bas, 64, 275.
- SRINIVASAN, R. (1961). Acta Cryst. 14, 1163.
- STORK-BLAISSE, B. A. & ROMERS, C. (1971). To be published. WEBER, R. (1858). Pogg. Ann. 104 (180), 421.

Acta Cryst. (1971). B27, 392

The Crystal and Molecular Structure of a Sulphur-Containing Antibiotic, 'vD844', 5-Oxo-6-N-methylformylamino-4,5-dihydro-1,2-dithiolo[4,3-b] pyrrole

By Birthe Jensen

Chemical Laboratory C, The Royal Danish School of Pharmacy, Copenhagen, Denmark

(Received 27 February 1970)

The antibiotic 5-oxo-6-N-methylformylamino-4,5-dihydro-1,2-dithiolo[4,3-b]pyrrole, $C_7H_6N_2O_2S_2$, crystallizes in the monoclinic space group $P2_1/c$ with four molecules in a unit cell of dimensions $a=14\cdot22$, $b=3\cdot788$, $c=19\cdot06$ Å; $\beta=116\cdot4^\circ$. The unit cell also contains about 3 molecules of water. The structure was solved from two- and three-dimensional Patterson syntheses and refined by the full-matrix least-squares method, producing a final R value of 0.105. It shows some disorder, caused partly by the water molecules and partly by the presence of two different conformations of the vD844 molecule in the crystal. The ring system is approximately planar and the side chain is twisted about 42° out of this plane, the angle being approximately the same in both of the conformations of the vD844 molecule. N-H---O hydrogen bonds of length 2.83 Å connect the vD844 molecules in pairs. The positions of the water molecules are not well defined; the molecular packing is very compact and leaves sufficient space for only about three of any four equivalent positions to be occupied. The average distance found between the oxygen atoms of two water molecules is 2.34 Å.

Introduction

A compound with anti-bacterial activity, and called vD844, has been separated from the culture fluid of an

unidentified *Streptomyces* species isolated from a soil sample collected near Copenhagen. It is strongly active against *Neisseria* and certain other gram-negative organisms, but it is rather toxic. Chemical investiga-